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ABSTRACT

Developing flight software for small-scale missions such as CubeSats and SmallSats is challenging. These missions

typically have ambitious goals, modest budgets, and tight schedules. To meet these challenges, a good flight soft-

ware framework is essential. Frameworks can provide an architecture, infrastructure, tools, and reusable software

components, all of which can help developers deliver their code on time and on budget.

In this paper we present F Prime, a free, open-source flight software framework developed at JPL and tailored to

small-scale systems such as CubeSats, SmallSats, and instruments. F Prime comprises several elements: (1) an archi-

tecture that decomposes flight software into discrete components with well-defined interfaces; (2) a C++ framework

that provides core capabilities such as message queues and threads; (3) tools for specifying components and connec-

tions and automatically generating code; (4) a growing collection of ready-to-use components; and (5) tools for test-

ing flight software at the unit and integration levels.

We describe the F Prime framework and tools and present our experience using them. We describe several enhance-

ments to the framework currently underway in the areas of software design, software verification, and ground data

systems for testing.

1. INTRODUCTION

Developing spacecraft flight software (FSW) is chal-

lenging under any circumstances. It is especially chal-

lenging for a small, cost-constrained mission with ambi-

tious goals. Many small satellites (e.g., CubeSats and

SmallSats) fit into this category. In these projects, all

stages of the development cycle, especially test, tend to

be compressed. FSW developers may face problems

such as insufficient staff, inadequate access to flight-like

hardware, poorly specified interfaces, and under-speci-

fied and rapidly changing requirements. While these

problems exist to some degree in all flight projects, they

are more pronounced in the context of a cost-con-

strained, rapid deployment.

So how to dev elop FSW for such a project? In general,

there are three possible approaches:

1. Develop the FSW from scratch, using patterns and

practices from previous missions.

2. Adapt and reuse FSW developed specifically for a

previous mission.

3. Use a FSW framework that is designed to support

reuse over multiple missions.

We contend that (3) is the only viable option for highly

cost-constrained, highly reliable software. Option (1)

usually is prohibitively expensive and/or leads to poor

quality software. It is also inefficient. Option (2) can

work, but it is not ideal. Unless software is designed for

reuse, it is difficult to reuse, because the reusable and

non-reusable parts tend to be intertwined. Developers

have to spend a lot of effort excising the reusable parts

and reshaping the interfaces to fit their needs.

In this paper, we present F Prime,1 a free, open-source

flight software framework developed at JPL and tailored

to small-scale flight systems such as CubeSats, Small-

Sats, and instruments. F Prime comprises the following

elements: (1) an architecture that decomposes flight

software into discrete components with structured com-

munication based on ports; (2) a C++ framework that

provides core capabilities such as message queues and

threads; (3) tools for specifying components and con-

nections and automatically generating code; (4) a grow-

ing collection of ready-to-use components; and (5) tools

for testing flight software at the unit and integration lev-

els.

F Prime has the following key features:

1. F Prime’s component-based architecture enables a

high degree of modularity and software reuse.

The typed port connections provide strong com-

pile-time guarantees of correctness.
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2. F Prime is tailored to the level of complexity

required for small missions. This makes it acces-

sible and easy to use, while still supporting a wide

variety of missions.

3. F Prime provides a complete FSW development

ecosystem, including modeling tools, testing

tools, and a ground data system.

4. F Prime runs on a wide range of processors, from

microcontrollers to multicore computers, and on

several operating systems. Porting F Prime to

new operating systems is straightforward.

We hope that by making F Prime widely available, we

can enable more developers of small-scale systems to

use option (3) instead of options (1) or (2) when devel-

oping their FSW.

The rest of this paper proceeds as follows. Section 2

describes the F Prime framework and tool chain. Sec-

tion 3 describes our experiences using F Prime in sev-

eral flight projects, in a research project, and for educa-

tional purposes. Section 4 describes several enhance-

ments to F Prime that are currently in process. Sec-

tion 5 discusses related work. Section 6 concludes.

2. F PRIME

In this section, we describe the F Prime framework and

tool chain. We divide the discussion into the following

subsections:

• The F Prime architecture (§ 2.1).

• The C++ framework that implements the architec-

ture (§ 2.2).

• Tools for modeling and code generation (§ 2.3).

• The generic, reusable components included in the

F Prime distribution (§ 2.4).

• Tools for unit and integration testing, including

the F Prime Ground Support Equipment (GSE)

software (§ 2.5).

2.1 The F Prime Architecture

F Prime comes with a software architecture called the F

Prime architecture. All F Prime FSW applications

conform to this architecture. A key benefit of F Prime is

that you get a proven FSW architecture just by using the

framework.

The F Prime architecture is based on the following con-

cepts: components, ports, and topologies. We define

each concept in turn.

2.1.1 Components

Every F Prime application is constructed from compo-

nents. A component is like a class in an object-oriented

language: it defines a collection of data and operations

on the data. Components are useful because they org a-

nize FSW into reusable pieces with well-defined inter-

faces.

When an F Prime application starts up, it constructs

instances of the components used in the application.

This action is similar to creating class instances in a

C++ program. Like a class instance, a component

instance shares its operations with other instances of the

same component, but it maintains its own data. The

component instances perform local computations and

communicate with each other to run the FSW. The

communication occurs via invocations from one com-

ponent instance to another. An inv ocation is a function

call that either immediately does some work or puts a

message on a queue for later dispatch.

The F Prime architecture defines three kinds of compo-

nents, summarized in Table 1 and described below.

Table 1: Kinds of Components

Component Execution Input

Kind Thread? Queue?

Active Yes Yes

Passive No No

Queued No No

Active Components: Each instance A of an active com-

ponent has an associated thread. A may receive syn-

chronous or asynchronous invocations from other com-

ponent instances. A synchronous invocation runs a han-

dler function immediately on the thread of the sender.

An asynchronous invocation runs a function on the

sender’s thread that places a message on a queue. A dis-

patch loop running on the thread of A later removes the

message from the queue and dispatches it by running a

handler function. A may also send synchronous and

asynchronous invocations to other components.

Common uses of active components include the follow-

ing:

• Performing background tasks (usually at low pri-

ority) that have no deadline.

• Driving the behavior of queued components, dis-

cussed below.

Passive Components: A passive component P is like an

ordinary C++ class (in fact its implementation in the F

Prime framework is just a C++ class; see § 2.2).
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Invocations sent to an instance of P must be synchro-

nous.

Common uses of passive components include the fol-

lowing:

• Filtering or transforming data on the way from

one component to another.

• Providing ports that other components can query,

e.g., to get the current time.

Queued Components: A queued component Q has an

input queue, so an instance of Q can receive both syn-

chronous and asynchronous invocations. However, the

instance has no thread of its own.

A typical use of queued components is to implement

periodic FSW behavior. In this pattern, an active com-

ponent A sends invocations to a queued component Q at

regular intervals, called real time intervals, or RTIs.

On each RTI, Q runs a handler on the thread of A that

performs the scheduled work of Q for that RTI. This

work can include dispatching messages from the queue

of Q.

Often, we group several queued components running at

the same rate r into a rate group. F Prime includes

special components for implementing rate groups; see

§ 2.4.

2.1.2 Ports

In the F Prime architecture, communication between

components is extremely structured. Component

instances do not directly access each other’s data or

methods; instead they send and receive inv ocations

(§ 2.1.1). The invocations occur over ports. When you

define a component, you specify its ports. Every user-

specified port has a type and a kind.

Port Types: A port type is like a function signature: it

specifies (1) what type of data may be sent on a port; (2)

whether sending the data produces a return value; and

(3) if there is a return value, the type of the value. The F

Prime framework (§ 2.2) includes several built-in port

types. You can also define new port types and use them

in components that you create.

Port Kinds: There are two basic kinds of ports: output

ports and input ports. Output ports send invocations to

input ports; input ports receive inv ocations from output

ports. Sending an invocation on an output port is also

called invoking the port. Input ports are further divided

into the following kinds, summarized in Table 2:

Table 2: Kinds of Input Ports

Port When Execution

Kind Handler Runs Thread

Synchronous Immediately External

Asynchronous Later Internal

Guarded External
After acquiring

a mutex lock

• Synchronous input ports: A synchronous input

port receives synchronous invocations (i.e., direct

function calls). Active, passive, and queued com-

ponents may have synchronous input ports.

• Guarded input ports: A guarded input port takes a

mutex lock, receives a synchronous invocation,

and releases the lock. Guarded ports are useful

for guarding concurrent access to mutable data

stored inside a component. Active, passive, and

queued components may have guarded input

ports.

• Asynchronous input ports: An asynchronous input

port receives asynchronous invocations (i.e., func-

tion calls that put messages on a queue) via the

input queue of its component. No mutex is taken,

because the input queue provides concurrency

safety. Active and queued components may have

asynchronous input ports.

When using synchronous input ports that access shared

mutable data, you have to ensure that the port handler is

concurrency safe.

Return Values: In F Prime, synchronous and guarded

input ports can return values. This feature lets a compo-

nent instance invoke an output port to get a value and

then use it. For example, a component instance C can

request the current time from a Time component and

then store the time into a time stamp. In this case, C has

an output port whose type has no arguments and a return

value (the time). The Time component has an input port

of the same type.

If the F Prime architecture enforced strict message-pass-

ing concurrency, then the time value would arrive in a

separate reply message. In this case, C would have to

(1) block and wait for the reply or (2) perform the rest

of the computation (the part that stores the time stamp)

in a reply handler. The first option is undesirable

because it blocks a thread. The second option is good

for concurrency, but inconvenient to write.

One consequence of this design is that output ports

don’t always send output data, and input ports don’t

always receive input data. In the example above, C
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invokes an output port to obtain input data (the time),

and Time runs an input handler to provide output data.

For this reason, it’s best to think of output ports as send-

ing output invocations and input ports as receiving input

invocations.

Serialize Ports: Sending data between typed ports pro-

vides a strong compile-time guarantee, namely that the

data provided by the sender has the type expected by the

receiver. Howev er, sometimes we have to relax this

guarantee. For example, we may need to send several

unrelated types on the same port when communicating

over a network.

In F Prime, components can have untyped ports, also

called serialize ports. The following rules apply to seri-

alize ports:

1. You can connect a typed output port to a serialize

input port. When you send data on the output

port, it is serialized into bytes before being sent.

The bytes encode the type of the data.

2. You can connect a serialize output port to a serial-

ize input port. In this case, sending data on the

output port causes the bytes to be passed through

unchanged to the input port.

3. You can connect a serialize output port to a typed

input port. When the data reaches the input port,

it is automatically deserialized to the type stored

in the bytes.

In rule 3, you have to ensure that all data reaching the

input port is of the type expected by the input port (the F

Prime tools can’t check this for you). If the type is

wrong, then a runtime error (FSW assertion failure)

occurs.

We use this pattern to pass data between logical com-

pute nodes such as physical processors, operating sys-

tem processes, and real-time partitions.

Modularity and Reuse: A key feature of the F Prime

architecture is that components never depend on com-

pile-time or link-time symbols defined in other compo-

nents. Components import the definitions of the port

types that they use, and the connections between the

ports occur at runtime, during the initialization phase of

FSW. As a result, each component may be specified,

implemented, and even compiled to object code know-

ing only the types of the ports it will be connected to.

This fact makes F Prime components highly modular

and reusable: they can be connected and reconnected

into different combinations with no modification to the

component code.

Figure 1: An Example F Prime Topology

2.1.3 Topologies and Deployments

A set of component instances and their connections

forms a directed graph called a topology. Figure 1

shows an example topology with three components. In

this example, the two components on the top encapsu-

late state machines, shown as nodes and arrows. The

bottom component receives commands; some C++ com-

mand handler code is shown.

A topology together with supporting code such as

binary libraries specifies a FSW executable program,

also called a deployment. From a single set of compo-

nent instances, you can create several different deploy-

ments. For example, you can have deployments that

correspond to different configurations of flight hard-

ware, or that swap out hardware components for soft-

ware simulators, or that test different parts of the sys-

tem. This flexibility is very useful during development

and testing of FSW.

2.2 C++ Framework

F Prime comes with a C++ framework that you can use

to construct FSW applications. The framework adheres

to the F Prime architecture (§ 2.1).

Components: The F Prime framework includes a C++

base class for each kind of F Prime component (active,

passive, and queued; see § 2.1.1). Each component in

an F Prime application is derived from one of these

classes.

When you define an F Prime component C, you specify

its kind and its ports, and you define its ground inter-

face. The ground interface includes commands, events,

and telemetry. Section 2.3 describes how this is done.

From the specification, the F Prime tools generate the

following C++ classes:
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• An abstract class CComponentBase derived from

the appropriate framework base class.

• A concrete class CComponentImpl derived from

CComponentBase.

CComponentBase is the base class for the C component

implementation. It contains generated code for receiv-

ing commands and for sending and receiving invoca-

tions on ports.

Figure 2: Component Classes

CComponentImpl is a skeleton for the user-defined

implementation of C. It contains stubbed-out handlers

for the input ports, each of which overrides a pure vir-

tual function defined in CComponentBase. To complete

the definition of CComponentImpl, you add member

variables and helper functions as necessary, and you fill

in the handler implementations. The framework and the

auto-generated base class take care of all the details of

invocation handling. This makes it easy to define new

components. When writing the handlers, you can send

data on output ports by calling member functions

defined in CComponentBase.

Figure 2 illustrates the ComponentBase and Compo-

nentImpl classes for a sample component with three

input ports and one output port. Each of the input ports

has a pure virtual handler in the base class that is imple-

mented in the implementation class. The handler imple-

mentation for port 3 sends data out on port 4.

Ports: The F Prime framework includes C++ base

classes for input and output ports. Each port in F Prime

is derived from one of these classes.

Figure 3: Example Component Class Diagram

When you define an F Prime port P, you specify its

arguments and its return type (if any). Section 2.3

describes how this is done. From the specification, the

F Prime tools generate the following C++ classes:

• InputPPort: A class derived from the framework

base class for input ports, representing P used as

an input port.

• OutputPPort: A class derived from the framework

base class for output ports, representing P used as

an output port.

When you specify a component C and define its ports,

the F Prime tools add appropriate instances of InputP-

Port and OutputPPort to CComponentBase as member

variables. Figure 3 shows an example class diagram for

an F Prime application with several components and

ports.

Serializable Types: The F Prime framework requires

that each type appearing in a port argument or return

value is serializable, that is, convertible to a byte

stream. Serializability provides a uniform way for the

framework to pass data through message queues and

serialize ports (see § 2.1.2).

Basic types (integral types, the Boolean type, and float-

ing-point types) are automatically serializable. Class

types are serializable if they are derived from an abstract

class Serializable provided by the framework. You can

specify serializable structure types in the FSW applica-

tion model (§ 2.3) and auto-generate the corresponding

derived classes of Serializable. Alternatively, you can

write your own serializable class in C++. To do this,
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you derive your class from Serializable and implement

its virtual methods.

OS Abstraction Layer: The F Prime framework

includes C++ classes that provide abstractions of com-

mon operating system (OS) features. These features

include threads, mutual exclusion locks, message

queues, files, timers, and clocks. The open-source

framework provides implementations of the OS layer

for Linux and Mac OS. The Linux implementation

works in Windows, on top of Cygwin. Internally to JPL

we have dev eloped an implementation for VxWorks. To

port F Prime to a new operating system S, you must

write implementations of these classes for S.

Optional Features: The F Prime framework has a num-

ber of optional features. If any of these features is not

needed, you can disable it by editing a configuration

file. Disabling unnecessary features saves memory

and/or CPU cycles during FSW execution. The optional

features include the following:

• Sending data on serialize ports (§ 2.1.2).

• Storing diagnostic information about component

instances, such as the names of the instances, at

runtime for debugging.

• Converting events emitted by FSW to human-

readable text so they can be printed on the console

or stored in a file.

2.3 Modeling and Code Generation

XML Specifications: F Prime defines an Extensible

Markup Language (XML) schema. Using the schema,

you can specify a model of a FSW application. The

model describes the application at a high level in terms

of the components, ports, and topologies of the F Prime

architecture (§ 2.1). The F Prime autocoder translates

the model into the C++ classes described in § 2.2.

Figures 4 and 5 show example XML files for specifying

F Prime ports and components. These examples are

adapted from the CmdDispatcher component in the F

Prime distribution (see § 2.4).

Figure 6 shows an example XML file for specifying a

topology. This example is adapted from the Ref appli-

cation, a FSW application included with the F Prime

distribution for tutorial purposes.

Ground Dictionaries: As part of an XML component

specification, you can define the following:

• Commands. You can specify commands that the

ground can send to instances of the component,

including the command name, the arguments to

the command, and the types of the arguments.

<interface name="Cmd" namespace="Fw">

<include_header>

Fw/Cmd/CmdArgBuffer.hpp

</include_header>

<comment>Command port</comment>

<args>

<arg name="opCode" type="FwOpcodeType">

<comment>Command Opcode</comment>

</arg>

<arg name="cmdSeq" type="U32">

<comment>Command Sequence</comment>

</arg>

<arg name="args"

type="CmdArgBuffer"

pass_by="reference">

<comment>

Buffer containing arguments

</comment>

</arg>

</args>

</interface>

Figure 4: XML Port Specification

<component name="CmdDispatcher"

kind="active"

namespace="Svc">

<import_port_type>

Fw/Cmd/CmdPortAi.xml

</import_port_type>

...

<comment>

A component for dispatching commands

</comment>

<ports>

<port name="compCmdSend"

data_type="Fw::Cmd"

kind="output"

max_number="$CmdDispatcherCommandPorts">

<comment>Command dispatch port</comment>

</port>

...

</ports>

...

</component>

Figure 5: XML Component Specification

• Telemetry Channels. You can specify the teleme-

try channels emitted by the component. A

telemetry channel has a unique ID and a value

type. A telemetry channel defines a set of teleme-

try points, where a point is a channel ID and a

value.

• Events. An ev ent is a report of FSW behavior, for

example a notification or a warning. Events have

arguments. For example, a FILE_UPLINKED

ev ent might have a single argument of string type

representing the file name.

• Parameters. A parameter is a constant value that

may be updated by command from the ground.

For example, control algorithms often have

parameters that need to be tuned or adjusted in
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<assembly name="Ref">

...

<import_component_type>

Svc/CmdDispatcher/CmdDispatcherComponentAi.xml

</import_component_type>

<import_component_type>

Svc/CmdSequencer/CmdSequencerComponentAi.xml

</import_component_type>

...

<instance namespace="Svc"

name="cmdDisp"

type="CmdDispatcher"

base_id="121"

base_id_window="20"/>

...

<instance namespace="Svc"

name="cmdSeq"

type="CmdSequencer"

base_id="541"

ase_id_window="23"/>

...

<connection name="Connection37">

<source component="cmdSeq"

port="cmdResponseOut"

type="CmdResponse"

num="0"/>

<target component="cmdDisp"

port="compCmdStat"

type="CmdResponse"

num="0"/>

</connection>

...

</assembly>

Figure 6: XML Topology Specification

flight.

The collection of these definitions for a single compo-

nent C forms the ground dictionary for C. The collec-

tion of definitions over all the component instances in a

system forms the ground dictionary of a system.

From the XML ground dictionaries, the F Prime tools

automatically generate Python code in a form that the F

Prime GSE (§ 2.5.2) can read. You can extend the F

Prime autocoders to translate the XML dictionaries to

the format used by the ground tools in your mission.

Graphical Modeling: As an alternative to writing XML

models, you can create and edit a formal model in the

System Modeling Language (SysML).2 SysML provides

a feature called a profile that lets you specialize it to an

application domain. In F Prime, a profile called the F

Prime Profile uses the concepts of generic components

and ports that are already embedded in SysML. It spe-

cializes these concepts to define the F Prime compo-

nents and ports described in § 2.1. See Figures 7 and 8.

To create a SysML model of an F Prime application,

you use the F Prime Profile inside a graphical modeling

tool called MagicDraw.3 An F Prime-specific Magic-

Draw plugin translates models expressed in the F Prime

Figure 7: The F Prime Profile for Port Types

Figure 8: The F Prime Profile for Component Types

Profile into the XML representation described above.

The resulting XML files are fully compatible with hand-

written XML, and they pass through the C++ and

ground dictionary autocoders in exactly the same way.

See Figure 9.

Figure 9: F Prime Modeling and Code Generation

Expressing an F Prime application as a formal model

has several advantages:

1. It captures the high-level design of the system in a

form that is easy to visualize.

2. It separates the high-level design from the imple-

mentation details.

3. It allows automated checking for violations of

architectural constraints. This checking can occur

before implementation begins, potentially saving

developer time.
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With regard to point 3, the MagicDraw plugin checks

the following architectural rules:

• Each port must have a valid type specification.

• Each connection must go from an output port to

an input port.

• Each connection must have matching port types at

its ends.

• Each output port may at most one connection or,

if the port is an array, one connection per index.

• No passive component may have an asynchronous

port.

• Each active component must have at least one

asynchronous port.

The plugin also warns the user about unconnected ports,

although sometimes unconnected ports are desired (a

component may provide a port or ports that are not used

in a FSW application).

2.4. Reusable Components

The F Prime distribution includes a number of generic

reusable components. These components cover many of

the basic functions of flight systems. In some cases, you

may have to supplement the generic components with

system-specific components or classes to adapt them to

your system. We will continue to add to the list of avail-

able components as we develop the framework.

Each component includes design documentation and

unit tests. Because of the F Prime architecture (§ 2.1),

these components are self-contained and are easy to

integrate into any flight software project that uses F

Prime.

Rate Groups: As discussed in § 2.1.1, a rate group is a

set of component instances that run periodically at the

same rate. F Prime provides two components for con-

structing rate groups: RateGroupDriver and ActiveR-

ateGroup.

In a typical FSW application, an instance d of Rate-

GroupDriver receives a periodic timing signal from

hardware or software and sends invocations to instances

ai of ActiveRateGroup, one for each rate group, at the

required rates. Each ai provides the thread for its rate

group. It converts the invocations received from d into

invocations that drive the behavior of the components in

group i.

Commands: CmdDispatcher receives data buffers con-

taining serialized commands. For each buffer received,

CmdDispatcher deserializes the command and dis-

patches it to a single index in an array of output ports.

To dispatch a command, CmdDispatcher looks up the

opcode in a registration table created during FSW ini-

tialization. The table matches each command opcode

with the array index to use for the dispatch.

CmdDispatcher stores each dispatched command in a

response table. When it receives a status reply for that

command, it looks in the response table to find the

sender of the command (e.g., CmdSequencer, described

below), and it forwards the response to the sender.

CmdSequencer loads binary command sequence files

in an F Prime-specific format and runs them. It supports

both absolute-time and relative-time commands. F

Prime includes a tool called tinyseqgen for generating

binary sequence files from a human-readable text input

format.

Events and Telemetry: ActiveLogger accepts incoming

ev ents and applies filters to them based on event sever-

ity. For each event that passes through the filters,

ActiveLogger stores the event in a circular buffer (the

log) and emits the event on an output port for use by

downstream components. If the event has fatal severity,

then ActiveLogger emits the event on a special port that

is typically connected to a FatalHandler (see below).

PassiveTextLogger accepts events, converts them into

human-readable text, and writes the text to the console.

This is useful for development and testing on the

ground.

TlmChan (for “channelized telemetry”) receives chan-

nelized telemetry points and stores them in a map.

“Channelized” means that each telemetry point consists

of a channel ID and a serialized value. You can use

each instance of TlmChan in one of two modes:

1. On request, provide the latest telemetry value

associated with a given ID.

2. Periodically send all telemetry points whose val-

ues have changed since the last period.

ComLogger receives data buffers called com buffers

and writes them to the file system. As an example, you

can connect the event output of an ActiveLogger

instance to an event serializer and then to the input of a

ComLogger. This provides continuous logging of

ev ents to the file system.

Ground Interface: BuffGndSockIf provides a socket-

based interface between FSW and the F Prime ground

data system (§ 2.5.2). It supports uplink of commands

and files and downlink of events, telemetry, and files. It

is useful for testing FSW on the ground.
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File System: FileUplink and FileDownlink provide file

uplink and downlink capabilities. They use an F Prime-

specific format for file packets; the format is a stripped-

down version of the CCSDS File Delivery Protocol

(CFDP) format.4 By connecting these components to an

instance of BuffGndSockIf (see above), you get file

uplink and downlink capability for ground testing. You

can also create on-board adapter components that con-

vert the F Prime file packets to and from your mission-

specific packet format.

FileManager provides a ground interface to the on-

board file system. It includes commands for listing

directories and for moving and renaming files and direc-

tories.

Memory Management: BufferManager manages

memory buffers from a statically allocated store. When

constructing a BufferManager instance, you provide the

size of the store and the maximum number of outstand-

ing buffers. The BufferManager interface has guarded

ports for allocating and deallocating buffers.

Generic Data Storage: PolyDb provides a map from

numeric identifiers to values. The values can be any of

the basic C++ types. Each entry in the map stores the

type and the value (represented as a union). PolyDb is

useful for storing any collection of values, for example

sensor readings received from hardware.

Parameters: PrmDb stores the current values of the

FSW parameters (§ 2.3). At FSW initialization, PrmDb

reads a parameter table out of a file. Each component

instance that has parameters (1) reads its parameter val-

ues out of PrmDb, (2) has ground commands for updat-

ing the parameters locally, and (3) has auto-generated

ground commands for updating the parameter values in

PrmDb. PrmDb has commands for saving the parameter

table to the file system.

Time: The Time component has a guarded port that

other components can invoke to request the current

spacecraft time. F Prime includes a Linux implementa-

tion of Time that uses clock_gettime.

Health: The Health component monitors FSW health to

ensure that no threads are spinning or stuck. It sends an

invocation to every active component in the system. If it

receives a response within a timeout interval, then all is

well. Otherwise it sends a warning event and eventually

a fatal event.

Assertions and Fatal Events: AssertFatalAdapter con-

verts FSW assertion failures into fatal events. FatalHan-

dler receives and handles fatal events. The implementa-

tion of FatalHandler is mission-dependent; typically, it

saves diagnostic information and halts the execution of

FSW.

2.5 Testing

Testing is a critical part of FSW development. Often,

the effort spent on testing a flight system is comparable

with the effort spent on designing and implementing it.

In this section, we discuss the features of F Prime that

support testing of FSW components and topologies.

2.5.1 Unit Testing

F Prime includes robust support for unit testing at the

component level.

Auto-Generated Test Classes: F Prime automatically

generates the following classes from the XML specifica-

tion of a component:

• TesterBase

• GTestBase

• Tester

TesterBase is the base class for testing a component C.

It provides a harness for unit tests that includes the fol-

lowing features:

• For each output port in C, an input port called a

from port. For example, if C has an output port

dataOut of type Data, then TesterBase has an

input port from_dataOut, also of type Data.

• For each input port in C, an output port called a to

port. For example, if C has an input port dataIn

of type Data, then TesterBase has an output port

to_dataIn, also of type Data.

• For each from port, a history of the data received

on that port. The history resides in a fixed-size

array with a configurable size. Events and

telemetry have a different history for each event

and telemetry channel.

• For each from port, a default handler that stores

its arguments into the history for that port. The

ev ent and telemetry ports have a different handler

for each event and telemetry channel.

• Utility methods for sending commands to the

component under test, for sending invocations on

to ports, for getting and setting the parameters of

the component under test, and for getting and set-

ting the time.

GTestBase is a derived class of TesterBase. It includes

the headers for the Google Test framework,5 so you can

use Google Test assertions — for example,

ASSERT _EQ to check that two values are equal —

when writing your tests. GTestBase also provides F
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Prime-specific assertion macros for checking properties

of the from port histories. In particular, you can check

the following:

• That the history of a from port has the specified

size. For example, to check that the history for

the telemetry channel PKTS_RECEIVED con-

tains one element, you can write

ASSERT_TLM_PKTS_RECEIVED_SIZE(1).

• That the history of a from port has the specified

data at the specified index. For example, to check

that the telemetry channel PKTS_RECEIVED has

value 1 at index 0, you can write

ASSERT_TLM_PKTS_RECEIVED(0, 1).

The F Prime-specific macros invoke the Google Test

macros.

GTestBase is a separate class so that its use is optional:

on systems that don’t support it (e.g., because the C++

compiler won’t compile Google Test), you can omit it.

Tester is a derived class of GTestBase. It contains the

component under test as a member. You write unit tests

in this class or in a derived class of this class.

Writing Unit Tests: To write unit tests against an F

Prime component, you typically use the following pro-

cedure:

1. Generate the test harness classes described above.

2. Either add tests directly to Tester or create a

derived class of Tester and add tests to it. Make

each test a public method of the class.

3. Write a file main. cpp containing (a) several tests

defined with the Google Test TEST macro and (b)

a main function that runs all the tests.

Each test defined in main typically (1) creates a fresh

instance of Tester or one of its derived classes and (2)

calls one of the test methods. That way, each unit test

starts with freshly initialized component state.

Running Unit Tests: The F Prime build system provides

targets for building and running component unit tests.

The system compiles unit tests with code coverage anal-

ysis enabled via gcov.6 Running the unit tests automati-

cally generates the code coverage results and stores

them to files in a form that you can examine.

2.5.2 Ground Support Equipment Software

F Prime comes with a ready-to-use ground data system

called the Ground Support Equipment (GSE) software.

The GSE is useful for development and testing of FSW.

In particular, the GSE is designed to work with the

generic FSW components discussed in § 2.4. By

putting the two together, you can quickly get up and

running with an end-to-end system that supports uplink

and downlink of commands, telemetry, events, and files.

The F Prime GSE is implemented in Python and

depends on a few Python packages. It requires little

effort to install.

Figure 10 shows the elements of the F Prime GSE archi-

tecture. We discuss these elements below.

Figure 10: F Prime GSE Architecture

TCP Socket Server: At the core of the GSE is a

threaded Transmission Control Protocol (TCP) socket

server. The server allows several clients to connect to a

single target. The target is the FSW application under

test. Clients can be instances of the GSE graphical user

interface (GUI), client scripts, or integration test scripts.

Everything is connected via TCP sockets using a simple

packet protocol developed for F Prime.

GSE GUI (gse.py): The GSE GUI runs on top of the

Python package TkInter. It connects to the server over a

dedicated TCP socket. The user interface consists of a

single window with the following tabbed panels:

• A command panel for sending commands to the

spacecraft.

• A telemetry panel for viewing telemetry points

received from the FSW in real time. The teleme-

try is organized and displayed by channel.

• An event panel for viewing event messages

received from the FSW in real time.

Bocchino 10 32nd Annual AIAA/USU

Conference on Small Satellites



• A graphical panel built on Matplotlib7 for produc-

ing stripcharts, histograms, and spectral plots of

telemetry data.

The user may create as many instances of this window

as desired. See Figure 11.

Figure 11: F Prime GSE GUI

Python API: The GSE includes a simple application

programming interface (API) for command and teleme-

try called gse_api.py. Its implementation is a Python

object that provides methods for sending commands to

FSW and receiving events and telemetry. The GSE API

is the basis for the automated integration testing features

discussed in § 2.5.3.

Python Code Generation: As discussed in § 2.3, the F

Prime tools generate Python modules from the F Prime

XML model. The modules contain the definitions of the

ground dictionaries that the GSE needs to format the

display, to send commands, and to receive events and

telemetry. The only configuration required is to set an

environment variable telling the GSE where to find the

generated Python dictionaries for the target application.

2.5.3 Automated Integration Testing

F Prime includes a Python test API for writing auto-

mated integration tests. The test API extends the GSE

API (§ 2.5.2). Using the test API, you can write Python

programs that send commands to the spacecraft and

check the resulting behavior, e.g., by asserting proper-

ties of event and telemetry histories. This kind of auto-

mation is essential for tests that must be run many times,

e.g., regression tests.

Sending Commands: To send a command to the space-

craft, you call the GSE API method send , passing in the

name of the command and an optional list of arguments.

Here is an example:

api.send(“CMD_NO_OP”)

This call sends a NO_OP command. The argument list

is empty, so it is omitted. As the name suggests,

NO_OP does nothing but emit events and telemetry

indicating that the command was received and dis-

patched. It is defined in the CmdDispatcher component

(see § 2.4), and it is useful for basic testing of uplink

and downlink.

Collecting Events and Telemetry: When the F Prime

GSE receives events and telemetry points from the

spacecraft, it stores them in input queues. The test API

adds Python classes for storing test histories of events

and telemetry. The histories provide methods for assert-

ing properties, e.g., that the event history contains an

ev ent with a specified value.

By default, incoming events and telemetry points accu-

mulate in the GSE input queues, and the test histories

remain empty. The test API provides a method update

that, when called, moves the available items from the

ev ent and telemetry queues into the event and telemetry

histories. However, you rarely call update when writing

tests; instead, you usually write wait_assert methods, as

described below. These methods update the test histo-

ries when they run.

Checking Event History Size: The test API method

wait_assert_evr_size_eq has one required argument,

which is the expected size size of the event history.

When called with one argument, this method does the

following:

• If the event history has size size, then return.

• Otherwise, move events from the input queue to

the event history until either (a) the history has

size size or (b) the default timeout period of five

seconds has elapsed. In case (b), cause the test to

fail.

wait_assert_evr_size_eq has the following optional

arguments:

• evr_name: An event name. If evr_name is

present, then wait_assert_evr_size_eq counts

only events with this name.

• filterFunc: A function that takes a list of argu-

ments and returns a Boolean value. If filterFunc

is present, then wait_assert_evr_size_eq counts

only events E for which this function returns true

when applied to the arguments of E.
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• timeout: A timeout in seconds. If timeout is

present, then wait_assert_evr_size_eq waits for

timeout seconds before failing.

In addition to eq, the test API provides similar functions

for the other standard comparisons ne, gt, lt, ge, and le.

Checking Events: The method wait_assert_evr_eq has

one required argument, which is a list L of values.

When called with one argument, this method does the

following:

• If the history contains an event whose argument

list matches L, then return.

• Otherwise, move events from the input queue to

the event history until either (a) the history con-

tains an event whose argument list matches L or

(b) the default timeout period of five seconds has

elapsed. In case (b), cause the test to fail.

Any argument in the list can be an object NEAR con-

structed with a center and a radius, e.g.,

NEAR(0, epsilon=0.1).

In this case, the argument in the event history matches if

it is inside the circle with the given center and radius.

wait_assert_evr_eq has the following optional argu-

ments:

• evr_name: An event name. If evr_name is

present, then wait_assert_evr_eq checks only

ev ents with this name.

• index: The index to check in the event history for

the matching arguments. You can write a number

(where, as in Python, negative numbers are offsets

from the end of the list), ANY , or ALL. The

default is ALL.

• timeout: As described above.

Again, the API provides similar functions for ne, gt, lt,

ge, and le.

Checking Telemetry: The test API provides functions

wait_assert_tlm_size_eq, wait_assert_tlm_eq, and the

corresponding functions for the other comparisons.

These operate similarly to their counterparts for events,

except that they check the telemetry history instead of

the event history.

3. EXPERIENCE WITH F PRIME

In this section, we discuss our experience using F Prime.

We describe several JPL flight projects that have used or

are using F Prime to develop the FSW. Then we discuss

a JPL research and technology development (R&TD)

effort that is using F Prime to develop a framework for

autonomous flight systems. Finally, we discuss our

experience using F Prime as an educational tool in the

context of university student projects.

3.1 ISS RapidScat

ISS RapidScat was a scatterometer, i.e., a radar-based

instrument for measuring near-surface wind speed and

direction over the ocean. It operated from the exterior

of the International Space Station (ISS) from November

2014 to August 2016.

The RapidScat FSW ran on a GE CR12 single-board

computer on top of VxWorks 6.8. It ran within the Dig-

ital Interface Bridge (DIB), a collection of internally-

developed and externally-procured electronics boards

for managing communication between the ISS and the

instrument. To communicate with the DIB, the ISS used

a MIL-STD-1553 data bus (the “1553 bus”)8 for com-

mand and telemetry and an Ethernet link for science

data. The DIB communicated with the instrument via

serial and discrete signals. Ke y requirements of the

software included processing DIB commands and pass-

ing radar commands to the instrument, packaging engi-

neering telemetry and science data from the radar

according to ISS specifications, buffering science data,

and providing time services to the instrument.

The RapidScat FSW represents the first use of an F

Prime deployment in space. All components of the

FSW were newly developed for the mission. Compo-

nent autocoding as discussed in § 2.3 was not yet avail-

able, so the developers hand-wrote the base classes for

the components. While this early use of F Prime did not

enable direct component reuse, it flight-validated the

framework. It also demonstrated the capability to use

the same components without modification in different

test configurations. Switching from a software-simu-

lated 1553 bus to a hardware bus required only a simple

change to the system topology.

3.2 ASTERIA

ASTERIA (Arcsecond Space Telescope Enabling

Research in Astrophysics)9 is a 6U CubeSat operating in

low-earth orbit. The ASTERIA mission is a collabora-

tion between JPL and the Massachusetts Institute of

Technology, with Morehead State University providing

the ground station.

ASTERIA is a space telescope. Its primary goal is to

demonstrate the following capabilities, which are firsts

for a CubeSat:
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• Precise pointing of the telescope imager (to

within five arcseconds, i.e., 5/3600 of a degree)

over sev eral back-to-back 20-minute observations.

• Stable thermal control (to within plus or minus

1/100 of a Kelvin) of the imager focal plane.

These capabilities are critical for photometry, i.e., mea-

suring the light emitted by stars as a function of time.

An important application of photometry is the detection

of exoplanets (planets orbiting stars outside our solar

system) via the transit method, (detecting the changes

in star light that occur when a planet passes in front of a

star). A secondary goal of ASTERIA is to detect exo-

planets.

Figure 12: The ASTERIA Spacecraft

Spacecraft: The ASTERIA CubeSat has a payload com-

prising a lens and baffle assembly, a CMOS imager, and

a two-axis piezoelectric stage for fine positioning of the

imager. A Blue Canyon Technologies (BCT) XACT10

provides attitude control, including coarse-grain point-

ing during observations. Fine-grain pointing occurs via

a software control loop that moves the piezo stage in

response to the motion of star centroids.11 Thermal con-

trol of the imager occurs via passive cooling and heaters

driven by a software control loop.

Figure 12 shows the ASTERIA spacecraft with its solar

panels in the deployed position. The large aperture in

front is the telescope lens, and the smaller aperture is

the star tracker.

Mission Timeline: JPL delivered the ASTERIA space-

craft to the NanoRacks CubeSat deployer12 in June

2017. Launch and delivery to the International Space

Station (ISS) occurred in August 2017. Deployment

from the ISS occurred in November 2017. ASTERIA

successfully completed its 90-day primary mission in

February 2018. As of this writing, it is in an extended

mission through at least August 2018.

Flight Software: The ASTERIA FSW is based on F

Prime. It contains 54 components and 93 component

instances. 17 components were inherited from F Prime

and used unmodified or with minor modifications. 22

were developed for ASTERIA but reusable in future

missions. 16 were developed for ASTERIA and are

mission-specific.

Experience with F Prime: ASTERIA FSW develop-

ment was challenging. The ASTERIA FSW is complex,

and the schedule and budget were extremely con-

strained. The FSW requirements, particularly the fault

protection requirements, did not stabilize until very late

in the development cycle (on the order of weeks before

delivery).

The F Prime framework was a key factor in the success-

ful delivery of FSW under these constraints. Of particu-

lar benefit were the architectural patterns, the modeling

and code generation, the direct component reuse, and

the GSE.

Because ASTERIA was an early F Prime deployment,

the ASTERIA FSW team developed parts of F Prime

itself. Some of the components and framework

enhancements developed for ASTERIA (e.g., FileUp-

link and FileDownlink, described in § 2.4; automated

integration testing, described in § 2.5.3) are now part of

mainline F Prime. Other framework enhancements

(e.g., a simplified way to model components and topolo-

gies) are the basis for proposed new features of F Prime.

We discuss these further in § 4, below.

3.3 Lunar Flashlight and NEA Scout

Lunar Flashlight and Near Earth Asteroid (NEA) Scout

are two deep-space 6U CubeSats in concurrent develop-

ment at JPL. Selected by NASA’s Advanced Explo-

ration Systems (AES), they are planned for launch as

secondary payloads of the NASA Space Launch Sys-

tem’s inaugural Exploration Mission-1.

Lunar Flashlight will map the lunar south pole for

volatiles, including water from ice deposits. It will

shine a near-infrared laser into regions of shadow while

a spectrometer measures surface reflection and composi-

tion. NEA Scout, developed jointly with NASA’s Mar-

shall Space Flight Center, will navigate to a near-earth

asteroid that is yet to be selected. Its propulsion will

include a solar sail. Once at the target asteroid, NEA

Scout will use a multi-spectral camera to take images

and transmit them back to Earth.

The two CubeSats share a common avionics platform,

developed at JPL. It features a Cobham Gaisler

GR712RC dual-core Leon3 processor. The CubeSats
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also have sev eral common hardware components,

including the command and data handling (C&DH) sub-

system, radio, electrical power subsystem, power switch

control, sensor electronics, and solar panels. The flight

systems diverge with respect to guidance and control,

propulsion, and instruments.

Both CubeSats use F Prime deployments for their FSW.

Each deployment runs on a single core on top of

VxWorks 6.7. The two deployments share 53 compo-

nents. 16 are service components inherited from F

Prime (§ 2.4). The team made enhancements to Cmd-

Sequencer and ComLogger; these are expected to be

contributed back to mainline F Prime. Of the other

common components, most are either drivers associated

with the common hardware or data-formatting adapters

associated with the common ground data system. The

Lunar Flashlight FSW currently calls for five additional

project-specific components, while the NEA Scout FSW

calls for ten. Both FSW systems adapt generic F Prime

components for spacecraft fault protection.

A single FSW team is responsible for delivering both

FSW systems. The reuse of components from F Prime

and the sharing of components between the systems

have yielded significant cost savings versus developing

two separate CubeSats. Additionally, the common

C&DH subsystem developed for the two missions repre-

sents a validated avionics platform that future CubeSat

missions can use.

3.4 Mars Helicopter

The Mars Helicopter mission13 aims to demonstrate the

use of an autonomous helicopter to explore the Martian

surface. The helicopter will ride to Mars on board the

Mars 2020 rover and be deployed after the rover lands.

During deployment, a specially designed system con-

sisting of hinges and pyrotechnic bolts will gradually

unload the helicopter. After the rover moves away, the

helicopter will execute a set of increasingly challenging

flights, sending back images and performance data that

can inform the design of future hardware and software

for Martian flight.

Mission Timeline: In 2016 and 2017, test campaigns on

prototype vehicles validated the hardware design and

guidance algorithms. Figure 13 shows one of the proto-

type vehicles used. The flight vehicle was under con-

struction at the time of this writing. The Mars Heli-

copter will perform its mission in 2021, after the opera-

tions personnel have selected a safe site for carrying out

the experiment.

Figure 13: Mars Helicopter Prototype

Flight System: The flight environment of this mission is

very challenging. The low atmospheric density (about

1% of Earth atmospheric density) means that the heli-

copter blades must be long, spin rapidly, and be very

light. The flight dynamics require novel techniques for

guidance and control. On top of all that, the helicopter

must be small enough to fit under the belly of the rover.

The coaxial rotor design makes this possible.

The helicopter avionics system consists of two proces-

sors: (1) an automotive-grade microcontroller from

Te xas Instruments for controlling the rotor system and

(2) a cellphone-grade processor from Qualcomm for

guidance and control, commanding, and telemetry.

There are two cameras: a downward-facing navigation

camera and a forward-facing camera that takes high-res-

olution color pictures. A solar panel on top of the rotor

system recharges the helicopter battery.

In addition to the helicopter itself, the flight system

includes a base station mounted on the rover for man-

aging communication with the helicopter. The base sta-

tion and the helicopter use the same Qualcomm proces-

sor, allowing them to share a common avionics and soft-

ware design. The helicopter carries a commercial Zig-

Bee radio for communicating with the base station.

Flight Software: The FSW team used F Prime through-

out the development of the prototype vehicles and the

flight vehicle. The modularity of the F Prime architec-

ture enabled significant code sharing (1) through all

generations of the helicopter and (2) between the heli-

copter and the base station. The F Prime deployment on

the Qualcomm processor runs on Linux, while the

deployment on the microcontroller runs on bare metal.

The two deployments use serialize ports (§ 2.1) to com-

municate over a UART interface. It is easy to add a

communication path between two F  Prime component

instances, one on each processor: just connect ports on

either side of the interface. This requires no update to
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the UART protocol.

The FSW team developed many components, including

device drivers, navigation sensors, communication com-

ponents, and imaging components. The F Prime tools

made it easy to integrate all these components into the

command and telemetry subsystems. In developing the

FSW, the team reused components developed for the

other projects discussed in this section. This reuse

allowed the FSW team to meet a very challenging

schedule.

Ground System: The Mars Helicopter project made

extensive use of the GSE to develop hardware testing

scripts, to perform software validation, and to perform

flight testing. Sequences generated by the GSE tools

orchestrated the many flight plans required during vali-

dation of the vehicle.

3.5 Autonomy

The Autonomy Initiative is an internal research and

technology development (R&TD) task at JPL. It seeks

to make spacecraft more capable by increasing the level

of autonomous behavior within FSW. Currently, space-

craft commands for most activities are issued either

from the ground or via on-board sequences, which are

tightly-scripted lists of commands. Autonomous deci-

sion-making is reserved for handling faults and unex-

pected events during special time-critical activities.

The autonomy project is investigating the use of task

networks to allow spacecraft to adapt their behavior to

real-time inputs without ground intervention and to

respond more robustly to faults. A task network is a set

of tasks, each of which has a command (what to do

when running the task), a set of conditions (the condi-

tions on system state that are expected to hold when

running the task), and a set of impacts (the expected

effects on system state of running the task).

An on-board subsystem called the planner attempts to

fit the tasks into a valid schedule, i.e., one that will obey

all the constraints assuming that the declared impacts

occur when the tasks are run. During scheduling, the

planner may introduce new tasks, for example to resolve

higher-level tasks into lower-level ones or to repair con-

flicts in the schedule. When the planner has a valid

schedule, it sends it to another subsystem called the

controller. The controller runs the tasks at their sched-

uled times and checks that the conditions of the tasks

are satisfied. If the conditions are not satisfied, say

because a command failed during execution of a task,

then the controller can run a contingency task, or it can

halt the execution of the task network and force the

planner to generate a new schedule (a “re-plan”).

Some planning can be done on the ground. On-board

planning is needed in the following cases:

• Information needed to construct the plan is avail-

able only in flight, when the ground is not in the

loop. For example, when calculating how long to

run an observation, the ground may need to use

conservative estimates about available power. An

on-board planner could take account of power

measurements closer to the time of the observa-

tion.

• Something unexpected occurs, such as a hardware

fault. Today, the response to such a condition is

usually conservative, e.g., put the spacecraft in

safe mode and wait for ground intervention. An

autonomous system could diagnose the problem

and attempt to rectify it or work around it.

The concept of planning has a long history in computer

science. The novel parts of the Autonomy Initiative

include the following:

• Demonstrating the viability of on-board planning

using task networks for space flight.

• Demonstrating a dynamic system in which tasks

are created or updated on board in response to

changing real-time conditions.

• Demonstrating a general framework for autono-

mous FSW that can be adapted to many missions.

• Demonstrating the integration of on-board plan-

ning and execution with on-board fault diagnosis.

The Autonomy Initiative is implementing demonstration

FSW that illustrates the proposed capabilities. The

demonstration FSW uses F Prime. Each of the planner

and the controller is an F Prime component. There are

other components specific to the autonomy project, e.g.,

a component for managing system state, a component

for auto-navigation, and a component for fault diagno-

sis.

Using F Prime provides the following benefits for this

project:

• The architecture, tool chain, and basic FSW func-

tions (e.g., command and data handling) are

already in place, because they are inherited from

F Prime. The project can assume these funda-

mental aspects of FSW and focus its effort on the

new technology.

• It is easy to integrate external software (e.g., the

planner and controller software; software for

auto-navigation; software for fault diagnosis) by

wrapping the software in F Prime components

and then connecting the components to the rest of
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the system over ports.

• The F Prime tool chain makes it easy to develop

new components and to write unit and integration

tests in support of the demonstration FSW.

3.6 Educational Outreach

F Prime is a lightweight, open-source framework, and it

runs on a wide range of platforms. Therefore it is ide-

ally suited for student projects. Students can use it for

embedded software development knowing that they are

working with parts of the same software that runs on

deployed flight systems.

We are exploring the potential of F Prime as an educa-

tional and research tool targeting computer science,

computer engineering, and software engineering under-

graduate and graduate students. To date we have spon-

sored two technology enhancement projects with the

Master of Software Engineering program at Carnegie

Mellon University (CMU). These are discussed further

in § 4.1. In March 2018, we co-sponsored a hackathon

at CMU focused on development for the Raspberry Pi.

We created a demonstration component for the occa-

sion, and we added it to the F Prime open-source distri-

bution. We also incorporated F Prime into FSW work-

shops that we conducted at the University of Colorado,

Boulder, in April 2017 and at Cornell University in June

2018. Both schools have established CubeSat develop-

ment programs.

4. ENHANCEMENTS IN PROGRESS

In this section, we discuss enhancements to F Prime that

are currently in progress. We discuss three broad areas

of work: (1) modeling and code generation, (2) testing,

and (3) the GSE.

4.1 Modeling and Code Generation

As described in § 2.3, F Prime developers currently use

MagicDraw and SysML to specify models. This situa-

tion is not ideal, for the following reasons:

• F Prime modeling is very simple; SysML and

MagicDraw are not. They are cumbersome to

use, with a steep learning curve.

• MagicDraw requires a commercial license.

• The MagicDraw plugin has no support for creat-

ing command, telemetry, event, or parameter dic-

tionaries. Developers must write these directly in

XML.

Working with faculty and students at Carnegie Mellon

University (CMU), we are developing a new, domain-

specific modeling language and tool chain for F Prime

called FPP (for “F Prime Prime”). We intend that FPP

will be freely available and easy to use, and it will sup-

port the full range of F Prime features in a natural way.

Modeling Language and Translation: To date we have

developed the following:

1. A domain-specific source language for specify-

ing F Prime models. Specifications in the source

language are similar to the XML shown in Fig-

ures 4 through 6, but with a syntax that is much

less verbose and more readable.

2. An optional graphical user interface (GUI) editing

environment, implemented as an Eclipse inte-

grated development environment (IDE) plugin.

3. A tool called fpp-compile that translates models

specified in the FPP source language to an XML

format called the FPP representation language.

This format is suitable for further processing, e.g.,

generating C++ code and ground dictionaries.

4. A tool called fpp-legacy-xml that translates FPP

representation language files into the XML format

currently used by the F Prime autocoders.

fpp-compile uses the Acme Studio framework from

CMU14 to check the model for compliance with the

architectural rules that we discussed in § 2.3. Acme

Studio provides a simple, declarative, and extensible

way to specify the rules.

Visualization: We are working with CMU to develop a

graphical tool (the FPP visualizer) for visualizing com-

ponents and connections. We hav e identified the follow-

ing requirements for the FPP visualizer:

1. The tool must provide different views of the con-

nection graph (i.e., particular ways of rendering

particular subgraphs of the graph).

2. The tool must automatically lay out the graph ele-

ments in a visually intuitive way.

3. The tool must allow manual editing of the layout

and attributes (e.g, fonts, sizes, and colors) of the

elements in a way that persists when the graph is

re-generated from the textual source.

4. The tool must provide convenient version control

for F Prime models extended with graphical rep-

resentations.

Some views can be inferred from the structure of the

underlying model. For example, the modeling language

lets you express a topology as a collection of sub-

topologies, and each sub-topology will be a view. Other

views can be specified by specifying a collection of

model elements in the model viewer. Each view will
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have an associated layout, i.e., a set of instructions for

how the view is to be rendered. We aim to provide auto-

matic layout that is good enough for visualizing the

model in day-to-day development without user interven-

tion. Manual adjustments will be allowed, e.g., for fine-

tuning a layout to prepare a presentation or report.

When you first load a model M , the FPP visualizer will

create a default layout for each view in M and save it in

a layout file. You can update the layout file either by

editing the graphical view and saving it to the file or by

directly editing the file. When you update the source

model, e.g., by adding or removing elements, the tool

will detect the change and will update the layout file

appropriately. Both the model and the layout file will be

stored as plain text, so they can be version-controlled by

standard configuration management tools such as git.

Graphical Editing: In its initial version, the FPP visual-

izer will support graphical editing of views. We would

like to extend the tool support graphical editing of mod-

els, e.g., by adding component instances to a canvas and

dragging connections between them.

4.2 Testing

We are working on several enhancements to F Prime in

the area of testing. Currently we are applying these

ideas to unit testing of F Prime components. We believe

that, with some modification, we can apply the same

ideas to integration testing of F Prime deployments.

Rules: We hav e found that it is useful to factor tests into

sequences of rules. A rule consists of a precondition

and an action. The precondition is a Boolean function

on the system state that says whether the rule may be

applied. The action commands the system to do some-

thing and checks for the expected behavior.

For example, consider a unit test for the BufferManager

component described in § 2.4. Tw o of the rules for test-

ing this component might look like this:

R1. If there is a buffer available and s is a legal buffer

size, then requesting a buffer of size s should suc-

ceed and should produce a valid buffer of size s.

R2. If no buffer is available and s is a legal buffer size,

then requesting a buffer of size s should fail with

a warning event NO_BUFFERS_AVAILABLE and

should produce an invalid buffer.

In fact, a small set of rules like this can fully describe

the behavior of the component. Further, once we have

written the rules, it is easy to use them to create tests.

For example, a test for successful allocation might cre-

ate a fresh BufferManager component and apply R1;

whereas a test for failed allocation might keep applying

R1 until all the buffers are allocated and then apply R2.

Applying R1 when there are no buffers available or R2

when there are buffers available would cause a test fail-

ure, because the preconditions of the rules are not met.

Writing tests as sequences of rules has several advan-

tages:

• It factors each test into small reusable pieces.

• It separates the problem of describing system

behavior (writing rules) from the problem of con-

structing tests (writing sequences of rules).

• As discussed below, it allows automatic construc-

tion of tests using scenarios.

We are adding support for rule-based testing to the F

Prime unit test framework. The support consists of (1)

an abstract C++ base class Rule and (2) extensions to

the test autocoders for writing assertions in user-defined

subclasses of Rule.

Scenarios: We are exploring the use of scenarios to

write tests in F Prime. A scenario is a recipe for gener-

ating tests expressed as sequences of rules. For exam-

ple:

S1. Apply rules r1, . . . , rn in order.

S2. Randomly construct a sequence ri of at most n

rules, where for each i (1) ri lies in a specified set

S of rules, and (2) the precondition of ri evaluates

to true in the current state just before it is applied.

S3. Randomly interleave scenarios S1 and S2. At

each step in the sequence for S3, randomly

choose i = 1 or 2. If i = 1 and the precondition

for the next rule of S1 is met, then apply it. Oth-

erwise generate a random rule according to S2

and apply it.

We are developing a C++ framework that lets you com-

bine rules into scenarios and scenarios into more com-

plex scenarios, using operations such as nondeterminis-

tic choice, repetition (loops), interleaving, and condi-

tional execution.

Scenarios are useful because we can automatically gen-

erate many tests (potentially millions) from a single,

compact scenario specification. For example, each

sequence generated by S2 above represents a different

test. Further, the set of tests described by S2 is in gen-

eral much larger than the largest set of tests that it would

be possible to write by hand.

Picking Test Inputs: Tests require input values. For

example, the size s is an input to rule R1 above. There-

fore, any test that applies R1 n times has at least n

inputs s1, . . . , sn.
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Traditional approaches to picking test inputs include the

following:

• Pick a concrete value or a set of concrete values.

• Pick a random value.

These approaches will certainly work. However, we

would like to better: we would like to pick inputs that

will force the test to fail, if such inputs exist.

We are exploring the use of a tool called kontest for

picking the inputs to F Prime tests. kontest is an experi-

mental testing tool being developed at JPL. It uses

dynamic symbolic testing (also called concolic testing

— a portmanteau of “concrete” and “symbolic”)15 to

search for inputs that cause test failures.

Spin Model Checking: We are exploring the use of the

Spin model checker16 in F Prime unit testing. Spin is an

explicit-state model checker: it remembers and system-

atically explores all the states of a system.

Currently we are exploring the following ideas:

1. Using Spin to generate tests that explore all states

described by a scenario.

2. Using the linear temporal logic (LTL) specifica-

tion feature of Spin to generate tests that drive the

system to specified goal states.

3. Writing explicit models in Promela (the modeling

language of Spin) and using them to generate unit

tests.

Idea (1) potentially improves on random testing,

because it is guaranteed to explore all states, whereas

randomness may miss some states. However, (1) will

generally not be computationally tractable for the full

state space of an F Prime component. To make this idea

work, we will have to define an abstracted version of the

state space — for example, by collapsing the 232 values

of a 32-bit unsigned integer variable into a few represen-

tative values.

Spin has features that make this kind of abstraction pos-

sible. In general, it is hard to ensure that such abstrac-

tions are sound, i.e., that if an execution passes a test in

the reduced state space, then the corresponding execu-

tion is correct in the full state space. However, even

with potentially unsound abstractions, we should be able

to generate large numbers of useful tests.

4.3 Ground Support Equipment Software

We plan to enhance the F Prime GSE (§ 2.5.2) as dis-

cussed below.

XTCE Ground Dictionaries: We plan to move to the

XML Telemetric & Command Exchange (XTCE) for-

mat17 for generating F Prime command and telemetry

dictionaries. XTCE is a standard published by the

Object Management Group (OMG), and many ground

tools support it. By using XTCE, we can avoid main-

taining dictionary generators for all the formats that we

support.

Mobile User Interface: The current GSE GUI cannot

run on mobile devices (tablets and smartphones). We

are adding this capability. Initially, we are focusing on

telemetry collection and display. We are using an open-

source framework developed by the NASA Ames

research center called OpenMCT.18

We hav e developed a Node.js application that converts F

Prime binary packets over TCP sockets into OpenMCT-

compatible JSON messages over web sockets. This

application lets us use OpenMCT to view F Prime

telemetry channels and to create strip charts from the

telemetry data. We plan to add the following features:

• A history of telemetry points in a lightweight

database (e.g., sqlite3) that can support search,

playback, and analysis.

• Commanding of F Prime FSW applications. To

date we have prototyped an immediate command

widget for OpenMCT.

• Additional capabilities for analysis and visualiza-

tion such as histograms, 3D plots, and channel-to-

channel relational plots.

Improved Server: We are developing a new GSE server.

Whereas the existing server connects multiple clients to

a single target, the new server can connect multiple tar-

gets to multiple clients simultaneously.

The new server uses a distributed-communication mes-

saging library called ZeroMQ.19 We selected ZeroMQ

because it has bindings for many languages, it has a rel-

atively small implementation, and it can gracefully

reconnect interrupted connections.

We hav e developed an F Prime component called ZMQ-

Radio. We hav e demonstrated that an F Prime applica-

tion incorporating this component is well-behaved when

its connection to the new server is interrupted and

restored.

The new server supports the use of different command

and telemetry formats via plugins. Thus, it can easily be

adapted to mission-specific command and telemetry

protocols. This capability will make F Prime even more

adaptable to a wide variety of mission applications.
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5. RELATED WORK

The concepts of components and ports come from soft-

ware architecture. For example, they are embedded in

SysML, discussed in § 2.3. F Prime specializes these

concepts to modeling FSW. The F Prime architecture

was influenced by the Mission Data System (MDS),20 a

general framework for control system applications

developed at JPL.

Another freely available framework for spacecraft flight

software is the core Flight System (cFS) from NASA’s

Goddard Space Flight Center.21 Like F Prime, cFS pro-

vides a software framework together with generic reus-

able components that can be combined into new appli-

cations. Here are the key differences between F Prime

and cFS:

1. F Prime is specifically designed for small-scale

flight systems.

2. F Prime provides a complete FSW development

ecosystem, including modeling, code generation,

testing, and a ground system.

3. The F Prime architecture uses static topologies

with typed connections, whereas cFS uses pub-

lish-subscribe over a software bus.

With regard to point 3, the two architectures lead to dif-

ferent tradeoffs. cFS allows reconfiguration of the

topology at runtime (e.g., by adding or removing com-

ponents), whereas F Prime does not. However, F

Prime’s static topologies provide stronger compile-time

correctness guarantees. In F Prime, you can use the

publish-subscribe communication pattern (the Auton-

omy project discussed in § 3.5 uses it to manage space-

craft state), but you have to build it on top of a static

connection topology.

6. CONCLUSION

We hav e presented F Prime, a free, open-source flight

software framework developed at JPL and tailored to

small-scale systems such as CubeSats, SmallSats, and

instruments We hav e discussed our experiences using F

Prime at JPL to date and the future directions that we

envision for F Prime. We believe that using a frame-

work like F Prime to develop FSW can reduce cost and

lead to more capable software systems.
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